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A new Chebyshev pseudospectral algorithm for second-order elliptic equations using finite 
element preconditioning is proposed and tested on various problems. Bilinear and biquadratic 
Lagrange elements are considered as well as bicubic Hermite elements. The numerical results 
show that bilinear elements produce spectral accuracy with the minimum computational 
work. L-shaped regions are treated by a subdomain approach. @? 1985 Academic Press, Inc. 

1. INTRODUCTION 

This paper introduces a new type of preconditioning based on finite element 
algorithms in order to solve second-order elliptic partial differential equations by 
pseudospectral techniques. 

It should be emphasized that the actual trends among numericists using spectral 
methods show a preference for pseudospectral approximations if Chebyshev 
solutions are sought. This is not very surprising as Chebyshev spectral methods 
(Galerkin or Tau techniques) are restricted to operators with constant coefficients 
and simple geometries (see, e.g., Orszag [ 11). The extension of these spectral 
techniques to nonconstant coefficients, operators, and/or complicated geometries 
related to engineering problems would require huge computational resources and 
would strain the best algoithms on the best computers available at the present time. 
Consequently, it seems better and less expensive to resort to preconditioning 
methods within the framework of pseudospectral approximation, where variable 
coefficients, nonlinearities, etc., are more easily handled. 

A recent paper by Haldenwang and co-authors [2] compares the Chebyshev 
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solution of Helmholtz equations by direct spectral solvers and iterative pseudospec- 
tral algorithms, based on finite difference preconditioning. This last technique to be 
very efficient requires excellent fast Poisson solvers using, for example, FFTs, cyclic 
reduction, multigrid procedures, etc. As finite element methods for elliptic equations 
are well developed and well designed, we propose as a natural extension of earlier 
work the use of finite elements as preconditioners of pseudospectral algorithms. By 
this coupling, we hope to accumulate the advantages of both techniques: variable 
coefficients in the differential operator and geometrical ease for the FE solver on 
one hand and accuracy for the spectral representation on the other hand. 

Section 2 exposes the basic numerical method for self-adjoint second-order ellip- 
tic boundary value problems. Section 3 presents numerical results obtained for 
various problems on square and L-shaped regions. In the latter case, a subdomain 
technique is used for the spectral approximation. It is shown that Lagrangian 
bilinear elements provide a preconditioning technique which can compete with 
previous proposed algorithms [2, 31. Spectral accuracy is obtained through a finite 
number of iterations and because of the very sparse structure of the matrix system 
resulting from the use of bilinear elements, this kind of preconditioning proves to be 
less expensive than pseudospectral solutions based on higher degree finite elements. 

Direct solvers as in [2] lead to spectral accuracy with less computational effort 
for the same test problems. However the pseudospectral technique with finite 
element preconditioning forms a valuable tool of general capability which calls for 
further development to be able to tackle complex and nonlinear problems such as 
those encountered in fluid dynamics. 

2. BASIC ALGORITHM 

This section is devoted to the description of the general formalism. The basic idea 
rests upon an iterative process where at each step a problem of finite element type is 
solved with a right-hand side given by a residue evaluated through a Chebyshev 
pseudospectral calculation. The whole procedure may be viewed alternatively as a 
pseudospectral calculation with finite element preconditioning or as a series of finite 
element calculations with efficient pseudospectral corrective feedback. The expected 
accuracy depends essentially on the smoothness properties of the solution as well as 
on its spectral representation, i.e., on the cut-off value of the approximate expan- 
sion. A close relationship exists between this numerical procedure and the concept 
of iterated defect correction (IDeC) analyzed by Stetter (cf. [4]). This link will be 
investigated elsewhere. 

For the sake of clarity we consider a 2-dimensional second-order differential 
equation with mixed homogeneous boundary conditions: 

W& Y) f -W(x, Y) wx, Y)) + 4(x, Y) 4% Y) =f(x, Y) vx, Y E Q9 (14 

4x9 Y) pg +wx, y)u=O ( > 
vx, y E r. (lb) 
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The domain Sz is simply connected and bounded in the xy plane; its boundary f is 
piecewise smooth. The v symbol stands for the usual nabla operator whereas a/an 
represents a normal derivative at each point of r, except possibly on a set of zero 
measure. We assume moreqer, the following conditions of uniform ellipticity to be 
satisfied [ 51: 

Ax, Y)>,Y>O, 4(& Y) 2 0 v-7 YEQ, Pa) 

4% Y) + 6 Y) > 0 vx, y E r, (2b) 

ensuring problem (1) to be mathematically well-posed. Physically, the coefficients 
p(x, y) and q(x, y) represent a diffusion coefficient and an absorption term. In 
many practical situations these functions have piecewise analytic properties; 
throughout the sequel we shall assume however that p(x, y) and q(x, y) are con- 
tinuously differentiable over 0. 

With properties (2), a unique solution to problem (1) is known to exist among 
the set of functions having generalized derivatives of first-order square integrable 
over 52. Functions satisfying this property belong to the Sobolev space H’(Q). We 
introduce a scalar product (u, u) over elements of H’(Q): 

(u, u) = J1, d? u. u. (3) 

Closely associated to Eqs. (1) is the scalar product B(u, u) induced by the energy 
norm 

B( u, u) = fQ df( p vu .vu + q uu) + jre df, * ; uu, vu, u E H’(S2), (4) 

where r, is that part of the boundary where a(x, y) # 0. In its weak form, problem 
(1) may be reformulated in the following terms: find among HA(Q) c H’(Q), the set 
of elements of the Sobolev space which satisfy the essential boundary conditions, 
the unique element U(X, y) such that 

I(u) = “E-ga) (Nu, 0) -w u)). (5) 
0 

For a second-order problem, the essential boundary conditions are only those 
which apply to the value of the function. 

In the finite element approach of problem 1, one introduces a triangular or rec- 
tangular partition of Q, Q,, where h characterizes the “size” of the elements. A finite 
dimensional subspace of HA(D), SN, is constructed with piecewise functions, usually 
polynomials of degree k and the variational formulation (5) is restricted to SN, i.e., 
an element uN E S”’ is sought such that 

I(UN) = $$ (B(4 u) - qf, 0)). (6) 
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Condition (6) leads to an Nx N algebraic system of equations which is symmetric, 
positive definite, and, because of the local character of the basis, banded: 

where L,, is the stiffness matrix and ii, denotes the vector of unknowns. Usual 
practice consists in solving Eq. (7) directly by performing first Cholesky fac- 
torization of the global stiffness matrix, followed by a double sweep on triangular 
systems. Finite element algorithms are extremely flexible with regard to the 
geometry of the problem. They are able to cope with complicated domains, the par- 
titioning being most of the time made automatically by the computer code. Their 
accuracy depends essentially on the degree of the polynomial basis and on the 
nature of the problem. Classically one may show that for nonsingular problems 
-i.e., problems with smooth boundaries and interfaces-use of complete piecewise 
polynomials of degree (k - 1) on elements of size h yields an accuracy, 

Il~-~,llo,s;,~C~kI~lk,R, (8) 

for functions having kth order derivatives in the mean square sense. In inequality 
(8), c is a generic constant; ll~---,J~,~ and Iu/,,~ denote respectively the Sobolev 
norm and the seminorm of order m ( [6]), 

with, for 2D problems, 

Da= 
alal 

axul ap’ a = (a,, a,), Ial = aI + cI2. 

Pb) 

As is well known, the result (8) is optimal. For nonsmooth boundaries or interfaces, 
however, the possible presence of singular functions at the vertices can sharply 
reduce the convergence orders for polynomial elements with degrees higher than 
one (cf. [7, 81). 

From here we shall concentrate on rectangular partitions of domains with boun- 
daries parallel to the axes but otherwise arbitrary, the simplest case being the 
square O,= [- 1, + l] x [ - 1, + 11. More complicated domains such as the 
L-shaped domain sketched on Fig. 1 will usually be divisible into a set of adjacent 
rectangular subdomains (Q = Ui= i Qj), each of which is easily mapped onto the 
square O1. We shall also restrict this study to boundary value problems with 
regular solutions. The more general case of singular solutions is out of scope and 
deserves further attention. 

We now turn to the Chebyshev pseudospectral approach of Problem 1, on 52,. 
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FIG. 1. L-shaped region divided in three subdomains 0, (i= 1, 2, 3). 

This is an example of the weighted residual technique corresponding to orthogonal 
collocation within a set of global functions. Let 6,(x, y) and TN(x, y) represent 
finite expansions in terms of Chebyshev polynomials of the solution and the 
righthand side of (Eq. la): 

U(x, Y)wilN(X, y)’ 2 2 uijT;(x) Tj(y) 

I=0 j=O 
(loa) 

and 

T&) = cos kB (cos 8 = s). (1Oc) 

The pseudospectral method applied on Q, enforces the PDE to be satisfied at the 
internal nodes {x,@y,;u=l,..., (N,-l);fi=l,..., (N,-1)) of a Gauss- 
Chebyshev-Lobatto (GCL) quadrature rule. Accordingly the set of unknowns { uii} 
is determined such that 

cr=l,..., (IV-l), /?=l,.,., (IV,,--l), (lla) 

with 

W&> VI = w - &) XJJ - Yp) (lib) 
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X,=COSE 
NX’ 

yp = cos g. 
Y 

(llc) 

The Chebyshev grid G, is defined for 0 < c1< N, and 0 Q /I < NY. The coordinates 
(1 lc) of the 2D GCL quadrature rule correspond to the extrema of TN,(x) T,,(y). 
The boundary conditions of problem 1 are taken into account by imposing their 
constraints into the physical space. Equations (1 la) lead to an algebraic system in 
N = (N, - l)(N, - 1) unknowns, 

(12) 

where the vectors li, and yN contain the spectral coefficients { uii} and (fi,} of (10). 
The use of spectral and pseudospectral methods in computational fluid 

mechanics has been justified theoretically by many authors. An outline of basic con- 
vergence and stability results for time-dependent problems may be found in 
Gottlieb and Orszag [9]. The stability of the Fourier method for linear hyperbolic 
and parabolic PDEs with variable coefficients was studied by Kreiss and Oliger 
[lo]. The essential result is that for problems with infinitely differentiable solutions, 
the approximation errors decay exponentially with N, the cut-off value of the 
expansion. More recently, Canuto and Quarteroni have analyzed the spectral and 
pseudospectral approximations of elliptic boundary value problems in a variational 
framework, typical of finite element theory (cf. [11, 121). Briefly, they establish the 
convergence in weighted Sobolev norm for the Chebyshev pseudospectral 
approximation of a 1D diffusion-advection problem with variable coefficients and 
homogeneous Dirichlet boundary conditions, under fairly broad hypothesis: a 
Holder continuity condition for the coefficients of the equation and a source term in 
a weighted Sobolev space H; (a > f). A similar result holds for the Neuman 
problem of the same equation with a diffusion coeflicient identical to 1. The 
interested reader is referred to [12] for more details and in particular to 
Theorems 2.4 and 3.2 which are the main results. Similar properties for higher 
dimensional problems, although extremely plausible, are still an open question. 

From a computational point of view the Chebyshev pseudospectral method is 
very attractive since it allows the use of FFT algorithms [ 131. However, because of 
the global character of the expansions (lo), the operator L,, is a full Nx N matrix. 
The inversion of the algebraic system (12) may therefore be time-consuming. 
Additionally, the condition number x(L,,) is O(N4) and the system (12) is more 
and more ill-conditioned for increasing values of N. Both arguments led Orszag to 
propose the use of preconditioning techniques with sparse, easily invertible matrices 
such as those arising in finite difference calculations (cf. Cl]). 

Let Lu = f represent the basic boundary value problem (1) on the given domain 
Sz and uk an approximation of u at iteration k of an iterative process. Assuming the 
existence of the Frechet derivatives of L we expand Lu into generalized Taylor 
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series in the neighborhood of uk (cf. [ 141). Truncating the series to first-order terms 
yields 

Luk+$ (U-uk)=Lu=f, 
.k 

(13) 

where at/au 4 L’ is the Frechet derivative of L. From (13), one obtains 

with 

L’ 6~~ = -Rk (144 

and 
Rk=Luk-J (14c) 

The residue of the basic equation at iteration k, Rk, can be evaluated to a very high 
degree of accuracy (i.e., almost computer round-off) by use of Chebyshev series (10) 
in conjunction with fast inverse and direct Chebyshev transforms [13]. 

When L is a linear operator, L’ = L and (14) becomes 

L6uk= -Rk. (15) 

Introducing Lap, numerical approximation of L -namely the finite element matrix 
generated by coiidition (6tinto the left-hand side of Eq. (15), together with (14b) 
gives 

U k+‘=(z-L.$L)Uk+Laplf, k = 0, l,... . (16) 

This is essentially equivalent to the preconditioning with L,, of the algebraic system 
(12). From a well-known theorem on the convergence of iterative methods, the 
algorithm (16) converges iff p(Z- L;‘L) < 1, where p(A) denotes the spectral 
radius of the matrix A [15]. It is also of common practice to underrelax iterative 
methods in order to stabilize the process and achieve convergence. The expression 
(14b) is then replaced by 

a&k=Uk+l-Uk (17) 

which transforms the iterative process (16) into the Richardson scheme: 

Uk + l= (I- aL,‘L) Uk + crL,‘f, k=O, l,.... (18) 

The relaxation parameter CI is chosen in order to minimize p(Z- aL.&,’ L). Assuming 
the eigenvalues of L;‘L to be real, simple and located into the interval [m, M], it 
is well known that a maximum rate of convergence is reached for CY,,~~ = 2/(m + M). 

The algorithm runs as follows. One starts by defining the finite element grid G,, 
whose vertices include the collocation grid G,: G, E G,,. 



524 DEVILLE AND MUND 

For a rectangular domain Sz = [a, b] x [c, d] and cut-off values N,, N,,, the 
coordinates of the mesh points are given by (1 lc) with adequate scaling. More com- 
plicated domains such as the L-shaped domain of Fig. 1 are divided into rec- 
tangular subdomains each of which is covered with a Chebyshev grid (11~). 
Figure 2, for instance, displays the L-shaped domain divided into 3 regions with a 
grid corresponding in each subdomain to the Chebyshev polynomials T8(x) T,(y). 
Globally, the whole set of points defines the finite element grid. The minimization of 
the variational functional (6) over SN yields a first approximation, say u”(x, JJ), of 
the solution of problem (1). 

Suppose that the iterative procedure is on its way and u~(x, y) is known. The 
next step consists first in evaluating the residue (14~). This is performed, subdomain 
by subdomain, in three stages. 

1. Using an inverse Chebyshev transform (DCT))‘, compute the coefhcients 
ui of the Chebyshev expansion (10a) in the subdomain from its subset of nodal 
values {z8(x,, y,)} at the local Chebyshev grid (1 lc). 

2. Evaluate the residue in Chebyshev space. For example, if L is the 
Laplacian operator, this stage evaluates as 

I?;+ 3 1 N. 

n(n’ - i’) ~4;~ + - 
c 2 m(m2-j')u;km-fv 

1 n=i+z I In=/+2 
n + le”en m + &en 

OdidN,, O,<j<N,, (19) 

with 

co = 2, c(=l Vi>O. 

0 
L42 Lx x 

FIG. 2. Chebyshev collocation grids for the L-shaped region. In each subdomain, N, = N, = 8. 
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The residue evaluation might also be performed in physical space. However, this 
would imply a matrix multiplication (which can be vectorized on a supercomputer) 
with an operation count greater than the one involved in the DCT. 

3. Using a direct Chebyshev transform DCT or a Clenshaw recurrence, 
restore the residue of a subdomain in physical space, i.e., evaluate the subset of 
nodal values (R“(x,, y,)} from the Chebyshev coefficients R% of the subdomain. 

Once these three stages are accomplished for all subdomains Qj of Q, the global 
residue Rk(x, y) is projected onto SN and one solves Eq. (15). This gives a correc- 
tion Gu~(x, v) to u~(x, y). Setting 

Uk+ ‘(x, y) = Uk(X, y) + CI GUk(X, y), (20) 

the iteration counter is incremented by one and the whole procedure is repeated 
-starting from the evaluation of the residues-until convergence is reached, i.e., 
when the ratio of residues in two successive steps (Rki ‘/Rkl is greater than +. 

At convergence, a final call to (DCT))‘, subdomain by subdomain, yields the set 
of Chebyshev coefficients {us”“} which allows the evaluation of u(x, y) everywhere 
in Q, in terms of the expansion (10a). 

A few remarks are in order. We emphasize that, in the process of computing 
uk+ ‘(x, y) from ak(x, y), the partition Q,, remains unchanged. This is quite charac- 
teristic of IDeC and in sharp contrast with extrapolation methods. In the combined 
pseudospectral/finite element process, advantage is taken from both discretization 
methods. The high accuracy comes essentially from the collocation method, i.e., the 
residue calculation (19) in spectral space, provided the cut-off N is sufficiently high. 
Passing over from physical to Chebyshev space and vice versa is easily performed 
by fast transforms. In the finite element part, Cholesky factorization is made only 
once in a preprocessing stage. Subsequent iterations need only a forward and 
backward sweep with a computation time proportional to NW where W is the 
matrix bandwidth. Further time reductions may be obtained by the use of static 
condensation for elements with internal nodes and by gaussian quadrature. 
Chebyshev expansions represent global approximations, whereas finite elements are 
essentially local. In the subdomain approach where the residues are evaluated sub- 
domain by subdomain, the C”(Q) matching at interfaces provided by the finite 
elements is not sufficient to allow for spectral accuracy. One has to ensure the con- 
tinuity of first-order derivatives at subdomain interfaces. In order to achieve such a 
requirement, the residues at interfaces are evaluated through a weak formulation of 
Eq. (15) leading to the relationship [ 161, 

(21) 

where the square bracket notation indicates the jump of normal derivatives at inter- 
faces aiQ and E a boundary layer width typically of the order of the distance 
between the interface and the first interior point. 
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A final point remains for discussion: how to select the relaxation factor a? It is 
easy to show that for bilinear finite elements the extreme eigenvalues of Lap’L are 
close to m = 1 and M= 7r2/4. Indeed, consider the 1D problem 

-u”(x) =f(x) XE[-1, +l],u(-l)=u(l)=O, (22) 

where u and fare approximated by linear elements on the Chebyshev collocation 
grid. Defining hi = x, + 1 - xi, one can easily compute the coefficients of the resulting 
tridiagonal matrix. It is found that, for the uj variable, they are 

2 2 2 
aj3i-‘= -hj_l(hjp,+hj)’ aLj=h,hi_,’ aj~J+1= -h,(h,+h,+,)’ (23) 

These coefficients are exactly the same as those produced by a finite difference (FD) 
approximation by centered differences on the Chebyshev grid. The difference 
between the two numerical techniques (FD and FE) will concern only the com- 
putation of right-hand side of the algebraic system, where finite differences involve 
only fi, while finite elements require the contribution of& 1, fi, fi+ i. The analysis 
carried out in Appendix 2 of Haldenwang et al. 123 within the finite difference con- 
text can therefore be transposed to the 1D finite element preconditioning and one 
concludes that for large cut-offs, m = 1 and M= 7?/4. The extension to 2D 
problems is only approximate since with bilinear elements, one node interacts with 
its eight neighbors instead of four with finite differences. However, the difference 
should not be very significant and one concludes that with Lagrangian bilinear 
finite elements, the spectrum of Lap1 L should be close to that obtained with finite 
differences. Accordingly, the optimal relaxation factor a,pt should be approximately 
equal to 0.577. Instead of using aopt from the start, another strategy consists in 
setting the initial guess a“ = 1 and adjusting the value at each iteration according to 

(24) 

where Mk is evaluated by the assumption 116~~J//118~~-~(1 = (1 -akMkI. 

3. NUMERICAL RESULTS 

In this section, numerical results will be presented for several problems on square 
and L-shaped regions. Whenever possible, they will be compared with those 
provided in [2] with direct spectral and FD-pseudospectral solvers. It should be 
pointed out that in all the computations with FE preconditioning, the a value was 
set systematically equal to 1. 

The first problem is a Poisson equation with Dirichlet boundary conditions on 
the unit square [0, 11 x [0, 11. The solution is u = sin(rr/2)x cos 27rj~. Using 
N, = N, = 16, the Chebyshev representation is sufficient to achieve machine 
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accuracy. Figure 3 displays the evolution of the maximum absolute value of the 
spectral residue over all Chebyshev coefficients with respect to the iteration counter. 
It can be seen that spectral accuracy is reached within a finite number of iterations, 
which is smaller for a higher degree of the finite element interpolation (L, , L, : 
Lagrangian bilinear and biquadratic approximations respectively; H, : bicubic Her- 
mite). The number of iterations is always less than 10. The bicubic Hermite element 
does not perform better than the quadratic Lagrangian element. 

The second test solves a Poisson equation with Dirichlet conditions, the solution 
of which is u = sin 471x sin 471~. Figure 4 shows the behavior of max,,, IRf: ,,,I as a 
function of the iteration index for various situations. With Lagrangian bilinear 
elements on a 17 x 17 Chebyshev grid, we do not observe the typical spectral rate of 
convergence and the accuracy very quickly reaches an asymptotic level. A similar 
behavior occurs for Lagrangian biquadratic elements on the same grid. This 
phenomenon is due to the cut-off value, which is too low to allow machine 
accuracy. However, if the cut-off is increased to 32, both bilinear and biquadratic 
elements provide spectral accuracy within a few iterations (< 10). The same figure 
shows the behavior of the spectral residue when finite differences replace finite 

\ 

I , , ( 1 

I 

5 10 iteration(k) 

FIG. 3. Evolution of the maximum absolute value of the spectral residue with respect to the iteration 
index. The solution of the Poisson equation is u = sin(nj2) x cos 2ny. L,, L2, and H, denote the use of 
Lagrangian bilinear, biquadratic, and bicubic Hermite elements in the preconditioning solver. 

581/60/3-12 
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FIG. 4. See legend of Fig. 4. The solution of the Poisson equation is u = sin 471x sin 4%~. FE-PS and 
FD-PS denote pseudospectral schemes with finite element and finite difference preconditioning, respec- 
tively. 

elements in the preconditioning. Although the general trend is analogous, one can 
observe that the finite difference preconditioning is slightly less efficient as the stop- 
ping criterion is met earlier becaue the residue reduction is less impressive. 

Figure 5 is related to problem (1) with p = 1 + 10x2y2, q = 0. The solution is 
u = sin rrx sin rry. The convergence achieved in 14 iterations is slowed down by the 
appearance of the nonconstant coefficients. 

Finally, the fourth test was carried on the L-shaped region of Fig. 1, which is 
divided into three subdomains. Here, the solution u is sin 27rx sin 27ry. Figure 6 dis- 
plays the evolution of max,, 1 R,,) over all subdomains, in terms of the iteration 
parameter. With a 16 x 16 Chebyshev expansion in each subdomain, the maximum 
residue decreases until lOPro where it reaches an asymptotic value. It can be seen 
that by (21) a patching of C’ continuity is achieved, providing the user with a 
solution of spectral accuracy. 

Table I enlightens the comparison of the different preconditioners and several 
conclusions may be drawn. L, and maximum norms are provided for the finite 
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10-6.. 

lo-'-- 

10-8-- 

10-g-- 

10-T 

lo-"-- 

lo-'2.. 

5 10 15 iteration(k) 

FIG. 5. Evolution of the maximum absolute value of the spectral residue with respect to the iteration 
index for a second-order ellitic equation with nonconstant coefficient. 

element initial guess and the final pseudospectral solution. Table 1 also reports 
CPU times in seconds on an IBM 370/158 machine to compute the first finite 
element solution and the converged solution. In order to compare identical 
procedures, those CPU times were obtained using Clenshaw recurrence in the third 
stage of the residue evaluation, because for some types of elements, GFE contains 
more points than G,. The last column of Table I yields the CPU time of the direct 
solver [2], where the initial preprocessing of eigenvalues and eigenvector com- 
putation is included. 

Despite the fact that the number of iterations is smaller for higher degree inter- 
polants, the cost to attain machine precision with biquadratic or bicubic Hermite 
elements is greater than the cost needed by bilinear elements. This observation 
comes from the higher computational work involved in more accurate precon- 
ditioners. A further interesting conclusion is provided by the comparison of the 
pseudospectral 16 x 16 solution with bilinear elements and the biquadratic finite 
element solution on a 32 x 32 grid for the second problem. Both approximations 
attain the same level of accuracy in the maximum norm (w 10-6). However, the 
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N,= NY= 16 per subdomain 

lo-‘-- 

10-2.. 

10-Z.. 

10-4-p 

10-s.- 

10-6.. 

lo-‘-- 

10-8-- 

10-O-- 

/* [ : : I ; ; ; ) ) 

5 10 iteration(k) 

FIG. 6. Evolution of the maximum absolute value of the spectral residue with respect to the iteration 
index. The solution of the Poisson equation on the L-shaped domain of Fig. 1 is u = sin 2nx sin 271~. 

bilinear/pseudospectral solution costs live times less than the quadratic finite 
element solution. Consequently, bilinear elements constitute the best preconditioning 
as they are able to reach spectral accuracy for the minimum cost. 

For the third test problem, the consumed CPU time is larger than for the first 
test case (constant coefficients) because the residue evaluation involves more back- 
and-forth transforms between real and Chebyshev spaces. 

Another interesting comparison comes from Table II where the two precon- 
ditioners (FD and FE) are applied to the second test problem (u = sin 471x sin 47~~). 
Here, for the FD-pseudospectral (FDPS) scheme, the value of the parameter c( is 
computed through Eq. (24) and is always between 1 and 0.95. 

Using bilinear finite elements, Clenshaw recurrence is replaced by direct 
Chebyshev transform DCT at stage 3 of the residue computation because in that 
case Gc = GFE. 

For the 17 x 17 case, both preconditioners offer the same accuracy at the same 
computing cost. For the 33 x 33 discretization, the FE-pseudospectral scheme is 
approximately four times as expensive as the FDPS method. This difference is 
explained easily by the asymptotic operation counts which are Nlog, NY and ZVN, 
for the FD and FE algebraic solvers, respectively. Note that the replacement of the 
Clenshaw algorithm by the Chebyshev transform leads to a reduction by a factor 6 
of the computing time for the FE-pseudospectral computation. However, the good 
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performance of the cyclic-reduction solution is restricted to the treatment of 
separable elliptic equations while the finite element method has greater generality. 

The numerical results obtained in this research show that with finite element 
preconditioning, one may reach spectral accuracy within a few iterations using a 
Chebyshev pseudospectral method, together with a discrete Chebyshev transform. 
It is shown that bilinear Lagrangian elements provide the required level of accuracy 
for the less expensive computing time. Further attention should be paid to the 
patching conditions at subdomain interfaces for more complicated geometries. 
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